Getting Started with PELINN-Q
This guide helps you quickly get started with PELINN-Q.
Step 1: Installation
Clone the Repository
git clone https://github.com/BramDo/PELINN-Q.git
cd PELINN-Q
Install Dependencies
pip install -r requirements.txt
Install PELINN-Q
pip install -e .
Step 2: Your First Experiment
Basic Example
Create a new Python file my_first_experiment.py:
import numpy as np
from pelinn import LiquidNeuralNetwork
# Create dummy data
X_train = np.random.randn(100, 10)
y_train = np.random.randn(100, 5)
# Initialize the network
lnn = LiquidNeuralNetwork(
input_size=10,
hidden_size=20,
output_size=5
)
# Train
lnn.train(X_train, y_train, epochs=50)
# Test
X_test = np.random.randn(10, 10)
predictions = lnn.predict(X_test)
print("Predictions:", predictions)
Run the script:
python my_first_experiment.py
Step 3: Quantum Error Mitigation
Quantum Circuit with Error Mitigation
from qiskit import QuantumCircuit, execute, Aer
from pelinn.qem import QuantumErrorMitigator
from pelinn import LiquidNeuralNetwork
# Create a quantum circuit
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
# Simulate with noise
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
noisy_results = job.result().get_counts()
# Train a mitigator
lnn = LiquidNeuralNetwork(input_size=4, hidden_size=10, output_size=4)
mitigator = QuantumErrorMitigator(lnn)
# Apply mitigation
mitigated_results = mitigator.mitigate(noisy_results)
print("Noisy results:", noisy_results)
print("Mitigated results:", mitigated_results)
Step 4: Use Existing Scripts
PELINN-Q contains example scripts in the scripts/ folder:
# Run an example script
python scripts/example.py
Step 5: Experiment with Notebooks
Open the Jupyter notebooks in the notebooks/ folder:
jupyter notebook notebooks/
These notebooks contain:
- Detailed tutorials
- Visualizations
- Comparisons with other methods
Customize Configuration
Customize the configuration via test.ini:
[model]
input_size = 10
hidden_size = 20
output_size = 5
[training]
epochs = 100
learning_rate = 0.001
Next Steps
- Check out the full documentation for more details
- Read more about the project