Documentation

Overview

PELINN-Q provides tools for quantum error mitigation with liquid neural networks. This documentation helps you use and understand the library.


📖 Class Explainers

Detailed explanations of the key classes and architectures in PELINN-Q:

Understanding LTCCell

In-depth explanation of the Liquid Time-Constant (LTC) recurrent neural network cell. Learn about:


🚀 Installation

Requirements

Install

# Clone the repository
git clone https://github.com/BramDo/PELINN-Q.git
cd PELINN-Q

Train a Liquid Neural Network

from pelinn import LiquidNeuralNetwork
from pelinn.qem import QuantumErrorMitigator

# Initialize the network
lnn = LiquidNeuralNetwork(
    input_size=10,
    hidden_size=20,
    output_size=5
)

# Train the model
lnn.train(training_data, epochs=100)

Apply Quantum Error Mitigation

# Create a QEM mitigator
mitigator = QuantumErrorMitigator(lnn)

# Apply mitigation to quantum results
mitigated_results = mitigator.mitigate(raw_quantum_data)

📚 API Referentie

LiquidNeuralNetwork

The main class for liquid neural networks.

Parameters:

Methods:

QuantumErrorMitigator

Class for quantum error mitigation.

Parameters:

Methods:


⚙️ Configuration

You can configure PELINN-Q through a config.ini file:

[model]
input_size = 10
hidden_size = 20
output_size = 5
learning_rate = 0.001

[training]
epochs = 100
batch_size = 32

📓 Voorbeelden

Check the notebooks/ folder for Jupyter Notebook examples and the scripts/ folder for standalone scripts.


🔧 Troubleshooting

Common issues

ImportError: Make sure all dependencies are installed

pip install -r requirements.txt

CUDA errors: Check that PyTorch is installed correctly for your system


🔗 More Information

Back to Home