Documentation
Overview
PELINN-Q provides tools for quantum error mitigation with liquid neural networks. This documentation helps you use and understand the library.
📖 Class Explainers
Detailed explanations of the key classes and architectures in PELINN-Q:
Understanding LTCCell
In-depth explanation of the Liquid Time-Constant (LTC) recurrent neural network cell. Learn about:
- Weights and learnable parameters (time-constant pathway, gating pathway, attractor vector)
- Forward dynamics and integration with Euler steps
- Regularization hooks for training
🚀 Installation
Requirements
- Python 3.8+
- NumPy
- PyTorch
- Qiskit (for quantum simulations)
Install
# Clone the repository
git clone https://github.com/BramDo/PELINN-Q.git
cd PELINN-Q
Train a Liquid Neural Network
from pelinn import LiquidNeuralNetwork
from pelinn.qem import QuantumErrorMitigator
# Initialize the network
lnn = LiquidNeuralNetwork(
input_size=10,
hidden_size=20,
output_size=5
)
# Train the model
lnn.train(training_data, epochs=100)
Apply Quantum Error Mitigation
# Create a QEM mitigator
mitigator = QuantumErrorMitigator(lnn)
# Apply mitigation to quantum results
mitigated_results = mitigator.mitigate(raw_quantum_data)
📚 API Referentie
LiquidNeuralNetwork
The main class for liquid neural networks.
Parameters:
input_size(int): Number of input featureshidden_size(int): Number of hidden neuronsoutput_size(int): Number of output featurestau(float): Time constant for the network
Methods:
train(data, epochs): Train the networkpredict(input): Predict the output for a given input
QuantumErrorMitigator
Class for quantum error mitigation.
Parameters:
model: Trained liquid neural network model
Methods:
mitigate(quantum_data): Apply error mitigationevaluate(test_data): Evaluate mitigation performance
⚙️ Configuration
You can configure PELINN-Q through a config.ini file:
[model]
input_size = 10
hidden_size = 20
output_size = 5
learning_rate = 0.001
[training]
epochs = 100
batch_size = 32
📓 Voorbeelden
Check the notebooks/ folder for Jupyter Notebook examples and the scripts/ folder for standalone scripts.
🔧 Troubleshooting
Common issues
ImportError: Make sure all dependencies are installed
pip install -r requirements.txt
CUDA errors: Check that PyTorch is installed correctly for your system